
1

Supplementary Materials

APPENDIX H
ROBUSTIFICATION OVER PRIOR MODEL PROBABILITY

In this appendix, we discuss the case where we solve the genuine problem (24) with respect to ω, rather than the simplified
case with respect to µ. In consideration of the high computational complexity, the genuine problem (24) with respect to ω is
not investigated in the main body of the paper.

Proposition 7: If the model set is exact and only the prior model probability vector ω is uncertain [i.e., the special ambiguity
set (23) is investigated], the reformulated distributionally robust Bayesian estimation problem (24) can be further reformulated
into a tractable quadratic fractional program

max
ω

−ω⊤(CAC − pb⊤C)ω

ω⊤pp⊤ω

s.t.

N∑
j=1

ωj = 1,

ωj ≥ 0, ∀j ∈ [N],
∆0(ω, ω̄) ≤ θ0,

(52)

where p := [p1(y), p2(y), . . . , pN (y)]⊤ denotes the likelihoods of the candidate models given the measurement y and C :=
diag(p) is a diagonal matrix whose diagonal entries are elements of p.

Proof: From (3), for every j ∈ [N], we have µj =
ωjpj(y)∑N

j=1 ωjpj(y)
=

ωjpj(y)
ω⊤p

, i.e., µ = [µ1, µ2, . . . , µN]
⊤
= Cω

ω⊤p
. Therefore,

the problem (24) can be explicitly written as

max
ω

−
(

Cω

ω⊤p

)⊤

A

(
Cω

ω⊤p

)
+ b⊤

(
Cω

ω⊤p

)

s.t.

N∑
j=1

ωj = 1,

ωj ≥ 0, ∀j ∈ [N],
∆0(ω, ω̄) ≤ θ0,

(53)

which can be rearranged into the quadratic fractional program (52). □
The problem (52) can be written in a compact form

max
ω∈Ω

f1(ω)

f2(ω)
, (54)

where f1(ω) := −ω⊤(CAC−pb⊤C)ω denotes the numerator of the objective of (52), f2(ω) := ω⊤pp⊤ω the denominator
of the objective of (52), and Ω the feasible region of (52). One may verify that although f2(ω) is convex, f1(ω) is neither
concave nor convex. However, f1(ω) ≥ 0 can be guaranteed because the objective of (19) is non-negative, as are those of
(24) and (52). Complete (approximated) solutions to the problem (54) can be found in, e.g., [S1],7 [S2],8 where involved
indefinite quadratic programs can be solved by the method in, e.g., [S3].9 Numerically solving (54) is time-consuming due to
the indefiniteness of f1(ω). Therefore, in this paper, we do not proceed further for (54). Instead, we find a simplified alternative
to the original problem (24) with respect to µ. Interested readers may implement solution methods in, e.g., [S3], to solve (54)
themselves.

APPENDIX I
SOLUTION TO (26)

The Lagrangian of (26) is
min

λ0≥0,λ1

max
µ

−µ⊤Aµ+ b⊤µ+ λ1 · (1− 1⊤µ)+

λ0 · (θ0 − µ⊤ lnµ+ µ⊤ ln µ̄).
(55)

For every λ0 ≥ 0 and λ1, the maximum µ satisfies the first-order optimality condition:

−2Aµ+ b− λ1 · 1+ λ0 · (− lnµ− 1+ ln µ̄) = 0, (56)

7[S1] W. Dinkelbach, “On nonlinear fractional programming,” Management Science, vol. 13, no. 7, pp. 492–498, 1967.
8[S2] A. T. Phillips, Quadratic Fractional Programming: Dinkelbach Method.Boston, MA: Springer US, 2001, pp. 2107–2110. [Online]. Available: https:

//doi.org/10.1007/0-306-48332-7 406.
9[S3] A. Phillips and J. Rosen, “Guaranteed ϵ-approximate solution for indefinite quadratic global minimization,” Naval Research Logistics (NRL), vol. 37,

no. 4, pp. 499–514, 1990.

https://doi.org/10.1007/0-306-48332-7_406
https://doi.org/10.1007/0-306-48332-7_406

2

which transforms (55) to
min

λ0≥0,λ1

λ0θ0 + λ1 + µ⊤Aµ+ λ01
⊤µ. (57)

Since (26) is a convex program and ū is a relative interior point in the feasible set, there does not exist duality gap between
(26) and (57). Since (57) is convex, any first-order gradient-based method, e.g., projected gradient descent, is applicable to
solve it. Let the objective of (57) be denoted as f(λ). From (56), we have −2A dµ

dλ0
= lnµ + 1 − ln µ̄ + λ0

1
µ ⊙

dµ
dλ0

, and
−2A dµ

dλ1
= 1+λ0

1
µ⊙

dµ
dλ1

, where 1
µ means element-wise fraction, and ⊙ denotes the Hadamard product (i.e., the element-wise

product). The gradient of the objective of (57) with respect to λ0 and λ1 are given by

∂f(λ)

∂λ0
= θ0 + 2µ⊤A

dµ

dλ0
+ 1⊤µ+ λ01

⊤ dµ

dλ0

= θ0 − µ⊤ lnµ+ µ⊤ ln µ̄,
(58)

and
∂f(λ)

∂λ1
= 1 + 2µ⊤A

dµ

dλ0
+ λ01

⊤ dµ

dλ1
= 1− 1⊤µ. (59)

respectively. Hence, when the optimality of (57) reaches, i.e., when the gradients with respect to λ0 and λ1 vanish, we have
1 =

∑N
j=1 µj and θ0 =

∑N
j=1 µj · ln µj

µ̄j
. Specifically, it means µ is indeed a distribution summed to unit and all the robustness

budget θ0 has been used. In summary, the solution to (26) is summarized in Algorithm 2. Since (26) is a convex program,
every iteration improves the objective.

Algorithm 2 Solution to (26)
Definition: S as maximum allowed iteration steps and s the current iteration step; α as step size; ϵ as numerical precision
threshold; abs(·) returns absolute value.
Remark: Since (57) is convex, any initial values for λ0 ≥ 0 and λ1 are acceptable. If early stopping is applied (i.e., S is not
sufficiently large for time-saving purpose), a normalization procedure is necessary to guarantee 1 =

∑
j µj .

Input: S, α, ϵ, λ0, λ1

1: s← 0;
2: while true do
3: // Update µ
4: Solve N -variable nonlinear root-finding sub-problem (56) to obtain µ(s) with current λ0 and λ1 (see Remark 8)
5: // Gradient Descent to Update λ0 and λ1

6: λ0 ← λ0 − α · ∂f(λ)
∂λ0

// See (58)
7: λ1 ← λ1 − α · ∂f(λ)

∂λ1
// See (59)

8: // Projection
9: if λ0 < 0 then λ0 ← 0

10: end if
11: // Next Iteration
12: s← s+ 1
13: // Stopping Rule
14: if s > S or abs(∂f(λ)

∂λ1
) < ϵ then

15: if 1 ̸=
∑

i µ
(s)
i then // Early Stopping Applied

16: µ
(s)
i ← µ

(s)
i /

∑
j µ

(s)
j , ∀i ∈ [N],

17: end if
18: break while
19: end if
20: end while
Output: µ(s)

Remark 8: We discuss the N -variate root-finding problem −2Aµ + b − λ1 · 1 + λ0 · (− lnµ − 1 + ln µ̄) = 0 on µ ≥ 0.
Let g(µ) := −2Aµ+ b− λ1 · 1+ λ0 · (− lnµ− 1+ ln µ̄). One may verify that dg(µ)/dµ ≺ 0 (i.e., g is a monotonically
decreasing function in µ), g(0) → ∞, and g(∞) → −∞. Therefore, at least one root of g(µ) = 0 exists and Newton’s
method can be used to find it. □

Remark 9: If the 2-norm constraint ∥µ − µ̄∥2 ≤ θ0 is used to replace the KL divergence constraint, then the root-finding
procedure would be significantly simplified. Therefore, in practice, to save computational time, one may choose the 2-norm
constraint (µ− µ̄)⊤(µ− µ̄) ≤ θ20 . Another choice to reduce the computational complexity is to use the Frank-Wolfe method
(i.e., linearization of the objective function) as in Proposition 5. □

3

APPENDIX J
THE STANDARD IMM FILTER

The implementation details of the interactive multiple model (IMM) method is given in Algorithm 3. The results in Step 2
(see Line 25) are due to (2) and (4) where µj,k|k−1 and µj,k|k are prior and posterior model probabilities of the jth model,
respectively. The prior model probability, model likelihood, and posterior model probability of the jth model are calculated in
Step 1.5 (see Line 18), Step 1.6 (see Line 20), and Step 1.7 (see Line 22), respectively. See [3], [5] (in the reference list of
the main body of the paper) for more information.

Algorithm 3 Interactive Multiple Model Algorithm [3], [5]
Definition: Let x̂j,k|k−1 denote the prior state estimate provided by the jth model and Pj,k|k−1 the corresponding state estimation
error covariance. Let x̂j,k|k denote the posterior state estimate provided by the jth model and Pj,k|k the corresponding state
estimation error covariance; Let x̂k|k denote the combined posterior state estimate of the N models and Pk|k the corresponding
state estimation error covariance; Let µj,k|k−1 and µj,k|k be the prior and posterior model probability of the jth model at the
time k, respectively; Let {πij}i,j=1,2,...,N be the model transition probability matrix.
Initialization: ∀j ∈ [N], initialize µj,0|0, x̂j,0|0, and Pj,0|0.
Remark: In literature, prior and posterior state estimate are also known as predicted and updated state estimate, respectively.

Input: yk , k = 1, 2, 3, . . .
1: while true do
2: // (Step 1) At Time k
3: for j = 1 : N do
4: // (Step 1.1) Transition Probability From ith Model at Time k − 1 To jth Model at Time k
5: µij,k|k−1 =

πij ·µi,k−1|k−1∑N
i=1 πij ·µi,k−1|k−1

6: // (Step 1.2) Initialize the jth Filter
7: x̂0

j,k−1|k−1 =
∑N

i=1 µij,k|k−1 · x̂i,k−1|k−1

8: P 0
j,k−1|k−1 =

∑N
i=1 µij,k|k−1 ·

{
Pi,k−1|k−1 + (x̂i,k−1|k−1 − x̂0

j,k−1|k−1)(x̂i,k−1|k−1 − x̂0
j,k−1|k−1)

⊤
}

9: // (Step 1.3) Prior Estimation of the jth Filter (i.e., Time Update)
10: x̂j,k|k−1 = Fj,k−1x̂

0
j,k−1|k−1

11: Pj,k|k−1 = Fj,k−1P
0
j,k−1|k−1F

⊤
j,k−1 +Gj,k−1Qj,k−1G

⊤
j,k−1

12: // (Step 1.4) Posterior Estimation of the jth Filter (i.e., Measurement Update)
13: rj,k = yk −Hj,kx̂j,k|k−1 // Innovation
14: Sj,k = Hj,kPj,k|k−1H

⊤
j,k +Rj,k // Innovation Covariance

15: Kj,k = Pj,k|k−1H
⊤
j,kS

−1
j,k // Filter Gain

16: x̂j,k|k = x̂j,k|k−1 +Kj,k · rj,k = x̂j,k|k−1 + Pj,k|k−1H
⊤
j,kS

−1
j,k ·

[
y(k)−Hj,kx̂j,k|k−1

]
17: Pj,k|k = Pj,k|k−1 − Pj,k|k−1H

⊤
j,kS

−1
j,kH

⊤
j,kPj,k|k−1

18: // (Step 1.5) Prior Probability of the jth Model
19: µj,k|k−1 =

∑N
i=1 πij · µi,k−1|k−1

20: // (Step 1.6) Likelihood of the jth Model
21: λj,k = Nn(rj,k;0,Sj,k)
22: // (Step 1.7) Posterior Probability of the jth Model
23: µj,k|k =

µj,k|k−1·λj,k∑N
i=1 µj,k|k−1·λj,k

24: end for
25: // (Step 2) Combined Posterior State Estimate
26: x̂k|k =

∑N
j=1 µj,k|k · x̂j,k|k

27: Pk|k =
∑N

j=1 µj,k|k ·
{
Pj,k|k + (x̂j,k|k − x̂k|k)(x̂j,k|k − x̂k|k)

⊤}
28: // (Step 3) Next Time Step
29: k ← k + 1
30: end while
Output: x̂k|k,Pk|k, µj,k|k

	Appendix H: Robustification Over Prior Model Probability
	Appendix I: Solution to (26)
	Appendix J: The Standard IMM Filter

