## Supplementary Materials

## Appendix H <br> Robustification Over Prior Model Probability

In this appendix, we discuss the case where we solve the genuine problem (24) with respect to $\boldsymbol{\omega}$, rather than the simplified case with respect to $\boldsymbol{\mu}$. In consideration of the high computational complexity, the genuine problem $\sqrt{24}$ with respect to $\omega$ is not investigated in the main body of the paper.

Proposition 7: If the model set is exact and only the prior model probability vector $\boldsymbol{\omega}$ is uncertain [i.e., the special ambiguity set (23) is investigated], the reformulated distributionally robust Bayesian estimation problem (24) can be further reformulated into a tractable quadratic fractional program

$$
\begin{align*}
& \max _{\boldsymbol{\omega}}-\frac{\boldsymbol{\omega}^{\top}\left(\boldsymbol{C A} \boldsymbol{C}-\boldsymbol{p} \boldsymbol{b}^{\top} \boldsymbol{C}\right) \boldsymbol{\omega}}{\boldsymbol{\omega}^{\top} \boldsymbol{\boldsymbol { p } ^ { \top } \boldsymbol { \omega }}} \\
& \text { s.t. } \quad\left\{\begin{array}{l}
\sum_{j=1}^{N} \omega_{j}=1, \\
\omega_{j} \geq 0, \\
\Delta_{0}(\boldsymbol{\omega}, \overline{\boldsymbol{\omega}}) \leq \theta_{0},
\end{array} \quad \forall j \in[N],\right. \tag{52}
\end{align*}
$$

where $\boldsymbol{p}:=\left[p_{1}(\boldsymbol{y}), p_{2}(\boldsymbol{y}), \ldots, p_{N}(\boldsymbol{y})\right]^{\top}$ denotes the likelihoods of the candidate models given the measurement $\boldsymbol{y}$ and $\boldsymbol{C}:=$ $\operatorname{diag}(\boldsymbol{p})$ is a diagonal matrix whose diagonal entries are elements of $\boldsymbol{p}$.

Proof: From (3), for every $j \in[N]$, we have $\mu_{j}=\frac{\omega_{j} p_{j}(\boldsymbol{y})}{\sum_{j=1}^{N} \omega_{j} p_{j}(\boldsymbol{y})}=\frac{\omega_{j} p_{j}(\boldsymbol{y})}{\boldsymbol{\omega}^{\top} \boldsymbol{p}}$, i.e., $\boldsymbol{\mu}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right]^{\top}=\frac{\boldsymbol{C} \boldsymbol{\omega}}{\boldsymbol{\omega}^{\top} \boldsymbol{p}}$. Therefore, the problem (24) can be explicitly written as

$$
\begin{array}{ll}
\max _{\boldsymbol{\omega}} & -\left(\frac{\boldsymbol{C} \boldsymbol{\omega}}{\boldsymbol{\omega}^{\top} \boldsymbol{p}}\right)^{\top} \boldsymbol{A}\left(\frac{\boldsymbol{C} \boldsymbol{\omega}}{\boldsymbol{\omega}^{\top} \boldsymbol{p}}\right)+\boldsymbol{b}^{\top}\left(\frac{\boldsymbol{C} \boldsymbol{\omega}}{\boldsymbol{\omega}^{\top} \boldsymbol{p}}\right) \\
\text { s.t. } \quad\left\{\begin{array}{l}
\sum_{j=1}^{N} \omega_{j}=1, \\
\omega_{j} \geq 0, \\
\Delta_{0}(\boldsymbol{\omega}, \overline{\boldsymbol{\omega}}) \leq \theta_{0}, \quad \forall j \in[N]
\end{array}\right. \tag{53}
\end{array}
$$

which can be rearranged into the quadratic fractional program 52 .
The problem (52) can be written in a compact form

$$
\begin{equation*}
\max _{\boldsymbol{\omega} \in \Omega} \frac{f_{1}(\boldsymbol{\omega})}{f_{2}(\boldsymbol{\omega})} \tag{54}
\end{equation*}
$$

where $f_{1}(\boldsymbol{\omega}):=-\boldsymbol{\omega}^{\top}\left(\boldsymbol{C A C}-\boldsymbol{p} \boldsymbol{b}^{\top} \boldsymbol{C}\right) \boldsymbol{\omega}$ denotes the numerator of the objective of $52, f_{2}(\boldsymbol{\omega}):=\boldsymbol{\omega}^{\top} \boldsymbol{p} \boldsymbol{p}^{\top} \boldsymbol{\omega}$ the denominator of the objective of 52 , and $\Omega$ the feasible region of 52 . One may verify that although $f_{2}(\boldsymbol{\omega})$ is convex, $f_{1}(\boldsymbol{\omega})$ is neither concave nor convex. However, $f_{1}(\boldsymbol{\omega}) \geq 0$ can be guaranteed because the objective of 19 is non-negative, as are those of (24) and 52]. Complete (approximated) solutions to the problem 54 can be found in, e.g., $\left.[\mathrm{S} 1]]^{7}[\mathrm{~S} 2]\right]^{8}$ where involved indefinite quadratic programs can be solved by the method in, e.g., [S3] 9 Numerically solving 54 is time-consuming due to the indefiniteness of $f_{1}(\boldsymbol{\omega})$. Therefore, in this paper, we do not proceed further for 54 . Instead, we find a simplified alternative to the original problem (24) with respect to $\boldsymbol{\mu}$. Interested readers may implement solution methods in, e.g., [S3], to solve (54) themselves.

## Appendix I

Solution to 26)
The Lagrangian of (26) is

$$
\begin{array}{ll}
\min _{\lambda_{0} \geq 0, \lambda_{1}} \max _{\boldsymbol{\mu}} & -\boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{b}^{\top} \boldsymbol{\mu}+\lambda_{1} \cdot\left(1-\mathbf{1}^{\top} \boldsymbol{\mu}\right)+  \tag{55}\\
& \lambda_{0} \cdot\left(\theta_{0}-\boldsymbol{\mu}^{\top} \ln \boldsymbol{\mu}+\boldsymbol{\mu}^{\top} \ln \overline{\boldsymbol{\mu}}\right) .
\end{array}
$$

For every $\lambda_{0} \geq 0$ and $\lambda_{1}$, the maximum $\boldsymbol{\mu}$ satisfies the first-order optimality condition:

$$
\begin{equation*}
-2 \boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{b}-\lambda_{1} \cdot \mathbf{1}+\lambda_{0} \cdot(-\ln \boldsymbol{\mu}-\mathbf{1}+\ln \overline{\boldsymbol{\mu}})=\mathbf{0} \tag{56}
\end{equation*}
$$

${ }^{7}$ [S1] W. Dinkelbach, "On nonlinear fractional programming," Management Science, vol. 13, no. 7, pp. 492-498, 1967.
${ }^{8}$ [S2] A. T. Phillips, Quadratic Fractional Programming: Dinkelbach Method.Boston, MA: Springer US, 2001, pp. 2107-2110. [Online]. Available: https: //doi.org/10.1007/0-306-48332-7_406
${ }^{9}$ [S3] A. Phillips and J. Rosen, "Guaranteed $\epsilon$-approximate solution for indefinite quadratic global minimization," Naval Research Logistics (NRL), vol. 37, no. 4, pp. 499-514, 1990.
which transforms (55) to

$$
\begin{equation*}
\min _{\lambda_{0} \geq 0, \lambda_{1}} \lambda_{0} \theta_{0}+\lambda_{1}+\boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu}+\lambda_{0} \mathbf{1}^{\top} \boldsymbol{\mu} \tag{57}
\end{equation*}
$$

Since 26 is a convex program and $\overline{\boldsymbol{u}}$ is a relative interior point in the feasible set, there does not exist duality gap between (26) and (57). Since (57) is convex, any first-order gradient-based method, e.g., projected gradient descent, is applicable to solve it. Let the objective of 57 be denoted as $f(\boldsymbol{\lambda})$. From 56 , we have $-2 \boldsymbol{A} \frac{\mathrm{~d} \boldsymbol{\mu}}{\mathrm{~d} \lambda_{0}}=\ln \boldsymbol{\mu}+1-\ln \overline{\boldsymbol{\mu}}+\lambda_{0} \frac{1}{\boldsymbol{\mu}} \odot \frac{\mathrm{~d} \boldsymbol{\mu}}{\mathrm{~d} \lambda_{0}}$, and $-2 \boldsymbol{A} \frac{\mathrm{~d} \boldsymbol{\mu}}{\mathrm{~d} \lambda_{1}}=1+\lambda_{0} \frac{1}{\mu} \odot \frac{\mathrm{~d} \boldsymbol{\mu}}{\mathrm{~d} \lambda_{1}}$, where $\frac{1}{\mu}$ means element-wise fraction, and $\odot$ denotes the Hadamard product (i.e., the element-wise product). The gradient of the objective of (57) with respect to $\lambda_{0}$ and $\lambda_{1}$ are given by

$$
\begin{align*}
\frac{\partial f(\boldsymbol{\lambda})}{\partial \lambda_{0}} & =\theta_{0}+2 \boldsymbol{\mu}^{\top} \boldsymbol{A} \frac{\mathrm{d} \boldsymbol{\mu}}{\mathrm{~d} \lambda_{0}}+\mathbf{1}^{\top} \boldsymbol{\mu}+\lambda_{0} \mathbf{1}^{\top} \frac{\mathrm{d} \boldsymbol{\mu}}{\mathrm{~d} \lambda_{0}}  \tag{58}\\
& =\theta_{0}-\boldsymbol{\mu}^{\top} \ln \boldsymbol{\mu}+\boldsymbol{\mu}^{\top} \ln \overline{\boldsymbol{\mu}}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial f(\boldsymbol{\lambda})}{\partial \lambda_{1}}=1+2 \boldsymbol{\mu}^{\top} \boldsymbol{A} \frac{\mathrm{d} \boldsymbol{\mu}}{\mathrm{~d} \lambda_{0}}+\lambda_{0} \mathbf{1}^{\top} \frac{\mathrm{d} \boldsymbol{\mu}}{\mathrm{~d} \lambda_{1}}=1-\mathbf{1}^{\top} \boldsymbol{\mu} . \tag{59}
\end{equation*}
$$

respectively. Hence, when the optimality of (57) reaches, i.e., when the gradients with respect to $\lambda_{0}$ and $\lambda_{1}$ vanish, we have $1=\sum_{j=1}^{N} \mu_{j}$ and $\theta_{0}=\sum_{j=1}^{N} \mu_{j} \cdot \ln \frac{\mu_{j}}{\bar{\mu}_{j}}$. Specifically, it means $\boldsymbol{\mu}$ is indeed a distribution summed to unit and all the robustness budget $\theta_{0}$ has been used. In summary, the solution to (26) is summarized in Algorithm 2 Since (26) is a convex program, every iteration improves the objective.

```
Algorithm 2 Solution to 26
Definition: \(S\) as maximum allowed iteration steps and \(s\) the current iteration step; \(\alpha\) as step size; \(\epsilon\) as numerical precision
threshold; abs(•) returns absolute value.
Remark: Since (57) is convex, any initial values for \(\lambda_{0} \geq 0\) and \(\lambda_{1}\) are acceptable. If early stopping is applied (i.e., \(S\) is not
sufficiently large for time-saving purpose), a normalization procedure is necessary to guarantee \(1=\sum_{j} \mu_{j}\).
Input: \(S, \alpha, \epsilon, \lambda_{0}, \lambda_{1}\)
    \(s \leftarrow 0 ;\)
    while true do
        // Update \(\boldsymbol{\mu}\)
        Solve \(N\)-variable nonlinear root-finding sub-problem (56) to obtain \(\boldsymbol{\mu}^{(s)}\) with current \(\lambda_{0}\) and \(\lambda_{1}\) (see Remark 8 )
        // Gradient Descent to Update \(\lambda_{0}\) and \(\lambda_{1}\)
        \(\lambda_{0} \leftarrow \lambda_{0}-\alpha \cdot \frac{\partial f(\boldsymbol{\lambda})}{\partial \lambda_{0}} \quad / /\) See (58)
        \(\lambda_{1} \leftarrow \lambda_{1}-\alpha \cdot \frac{\partial f(\boldsymbol{\lambda})}{\partial \lambda_{1}} \quad / /\) See \(\sqrt{59}\)
        // Projection
        if \(\lambda_{0}<0\) then \(\lambda_{0} \leftarrow 0\)
        end if
        // Next Iteration
        \(s \leftarrow s+1\)
        // Stopping Rule
        if \(s>S\) or \(\operatorname{abs}\left(\frac{\partial f(\boldsymbol{\lambda})}{\partial \lambda_{1}}\right)<\epsilon\) then
            if \(1 \neq \sum_{i} \mu_{i}^{(s)}\) then // Early Stopping Applied
            \(\mu_{i}^{(s)} \leftarrow \mu_{i}^{(s)} / \sum_{j} \mu_{j}^{(s)}, \quad \forall i \in[N]\),
            end if
            break while
        end if
    end while
Output: \(\boldsymbol{\mu}^{(s)}\)
```

Remark 8: We discuss the $N$-variate root-finding problem $-2 \boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{b}-\lambda_{1} \cdot \mathbf{1}+\lambda_{0} \cdot(-\ln \boldsymbol{\mu}-\mathbf{1}+\ln \overline{\boldsymbol{\mu}})=\mathbf{0}$ on $\boldsymbol{\mu} \geq \mathbf{0}$. Let $\boldsymbol{g}(\boldsymbol{\mu}):=-2 \boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{b}-\lambda_{1} \cdot \mathbf{1}+\lambda_{0} \cdot(-\ln \boldsymbol{\mu}-\mathbf{1}+\ln \overline{\boldsymbol{\mu}})$. One may verify that $\mathrm{d} \boldsymbol{g}(\boldsymbol{\mu}) / \mathrm{d} \boldsymbol{\mu} \prec \mathbf{0}$ (i.e., $\boldsymbol{g}$ is a monotonically decreasing function in $\boldsymbol{\mu}), \boldsymbol{g}(\mathbf{0}) \rightarrow \infty$, and $\boldsymbol{g}(\infty) \rightarrow-\infty$. Therefore, at least one root of $\boldsymbol{g}(\boldsymbol{\mu})=\mathbf{0}$ exists and Newton's method can be used to find it.
Remark 9: If the 2 -norm constraint $\|\boldsymbol{\mu}-\overline{\boldsymbol{\mu}}\|_{2} \leq \theta_{0}$ is used to replace the KL divergence constraint, then the root-finding procedure would be significantly simplified. Therefore, in practice, to save computational time, one may choose the 2 -norm constraint $(\boldsymbol{\mu}-\overline{\boldsymbol{\mu}})^{\top}(\boldsymbol{\mu}-\overline{\boldsymbol{\mu}}) \leq \theta_{0}^{2}$. Another choice to reduce the computational complexity is to use the Frank-Wolfe method (i.e., linearization of the objective function) as in Proposition 5 ,

## Appendix J <br> The Standard IMM Filter

The implementation details of the interactive multiple model (IMM) method is given in Algorithm 3. The results in Step 2 (see Line 25) are due to $\sqrt{27}$ and $\sqrt{4}$ where $\mu_{j, k \mid k-1}$ and $\mu_{j, k \mid k}$ are prior and posterior model probabilities of the $j^{\text {th }}$ model, respectively. The prior model probability, model likelihood, and posterior model probability of the $j^{\text {th }}$ model are calculated in Step 1.5 (see Line 18), Step 1.6 (see Line 20), and Step 1.7 (see Line 22), respectively. See [3], [5] (in the reference list of the main body of the paper) for more information.

```
Algorithm 3 Interactive Multiple Model Algorithm [3], [5]
Definition: Let \(\hat{\boldsymbol{x}}_{j, k \mid k-1}\) denote the prior state estimate provided by the \(j^{\text {th }}\) model and \(\boldsymbol{P}_{j, k \mid k-1}\) the corresponding state estimation
error covariance. Let \(\hat{\boldsymbol{x}}_{j, k \mid k}\) denote the posterior state estimate provided by the \(j^{\text {th }}\) model and \(\boldsymbol{P}_{j, k \mid k}\) the corresponding state
estimation error covariance; Let \(\hat{\boldsymbol{x}}_{k \mid k}\) denote the combined posterior state estimate of the \(N\) models and \(\boldsymbol{P}_{k \mid k}\) the corresponding
state estimation error covariance; Let \(\mu_{j, k \mid k-1}\) and \(\mu_{j, k \mid k}\) be the prior and posterior model probability of the \(j^{\text {th }}\) model at the
time \(k\), respectively; Let \(\left\{\pi_{i j}\right\}_{i, j=1,2, \ldots, N}\) be the model transition probability matrix.
Initialization: \(\forall j \in[N]\), initialize \(\mu_{j, 0 \mid 0}, \hat{\boldsymbol{x}}_{j, 0 \mid 0}\), and \(\boldsymbol{P}_{j, 0 \mid 0}\).
Remark: In literature, prior and posterior state estimate are also known as predicted and updated state estimate, respectively.
Input: \(\boldsymbol{y}_{k}, k=1,2,3, \ldots\)
    while true do
        // (Step 1) At Time \(k\)
        for \(j=1: N\) do
            // (Step 1.1) Transition Probability From \(i^{\text {th }}\) Model at Time \(k-1\) To \(j^{\text {th }}\) Model at Time \(k\)
                \(\mu_{i j, k \mid k-1}=\frac{\pi_{i j} \cdot \mu_{i, k-1 \mid k-1}}{\sum_{i=1}^{N} \pi_{i j} \cdot \mu_{i, k-1 \mid k-1}}\)
            // (Step 1.2) Initialize the \(j^{\text {th }}\) Filter
                \(\hat{\boldsymbol{x}}_{j, k-1 \mid k-1}^{0}=\sum_{i=1}^{N} \mu_{i j, k \mid k-1} \cdot \hat{\boldsymbol{x}}_{i, k-1 \mid k-1}\)
                \(\boldsymbol{P}_{j, k-1 \mid k-1}^{0}=\sum_{i=1}^{N} \mu_{i j, k \mid k-1} \cdot\left\{\boldsymbol{P}_{i, k-1 \mid k-1}+\left(\hat{\boldsymbol{x}}_{i, k-1 \mid k-1}-\hat{\boldsymbol{x}}_{j, k-1 \mid k-1}^{0}\right)\left(\hat{\boldsymbol{x}}_{i, k-1 \mid k-1}-\hat{\boldsymbol{x}}_{j, k-1 \mid k-1}^{0}\right)^{\top}\right\}\)
            // (Step 1.3) Prior Estimation of the \(j^{\text {th }}\) Filter (i.e., Time Update)
                \(\hat{\boldsymbol{x}}_{j, k \mid k-1}=\boldsymbol{F}_{j, k-1} \hat{\boldsymbol{x}}_{j, k-1 \mid k-1}^{0}\)
                \(\boldsymbol{P}_{j, k \mid k-1}=\boldsymbol{F}_{j, k-1} \boldsymbol{P}_{j, k-1 \mid k-1}^{0} \boldsymbol{F}_{j, k-1}^{\top}+\boldsymbol{G}_{j, k-1} \boldsymbol{Q}_{j, k-1} \boldsymbol{G}_{j, k-1}^{\top}\)
            // (Step 1.4) Posterior Estimation of the \(j^{\text {th }}\) Filter (i.e., Measurement Update)
                \(\boldsymbol{r}_{j, k}=\boldsymbol{y}_{k}-\boldsymbol{H}_{j, k} \hat{\boldsymbol{x}}_{j, k \mid k-1} \quad\) // Innovation
                \(\boldsymbol{S}_{j, k}=\boldsymbol{H}_{j, k} \boldsymbol{P}_{j, k \mid k-1} \boldsymbol{H}_{j, k}^{\top}+\boldsymbol{R}_{j, k} \quad\) // Innovation Covariance
                \(\boldsymbol{K}_{j, k}=\boldsymbol{P}_{j, k \mid k-1} \boldsymbol{H}_{j, k}^{\top} \boldsymbol{S}_{j, k}^{-1} \quad\) // Filter Gain
                \(\hat{\boldsymbol{x}}_{j, k \mid k}=\hat{\boldsymbol{x}}_{j, k \mid k-1}+\boldsymbol{K}_{j, k} \cdot \boldsymbol{r}_{j, k}=\hat{\boldsymbol{x}}_{j, k \mid k-1}+\boldsymbol{P}_{j, k \mid k-1} \boldsymbol{H}_{j, k}^{\top} \boldsymbol{S}_{j, k}^{-1} \cdot\left[\boldsymbol{y}(k)-\boldsymbol{H}_{j, k} \hat{\boldsymbol{x}}_{j, k \mid k-1}\right]\)
                \(\boldsymbol{P}_{j, k \mid k}=\boldsymbol{P}_{j, k \mid k-1}-\boldsymbol{P}_{j, k \mid k-1} \boldsymbol{H}_{j, k}^{\top} \boldsymbol{S}_{j, k}^{-1} \boldsymbol{H}_{j, k}^{\top} \boldsymbol{P}_{j, k \mid k-1}\)
            // (Step 1.5) Prior Probability of the \(j^{\text {th }}\) Model
                \(\mu_{j, k \mid k-1}=\sum_{i=1}^{N} \pi_{i j} \cdot \mu_{i, k-1 \mid k-1}\)
            // (Step 1.6) Likelihood of the \(j^{\text {th }}\) Model
                \(\lambda_{j, k}=\mathcal{N}_{n}\left(\boldsymbol{r}_{j, k} ; \mathbf{0}, \boldsymbol{S}_{j, k}\right)\)
            // (Step 1.7) Posterior Probability of the \(j^{\text {th }}\) Model
                \(\mu_{j, k \mid k}=\frac{\mu_{j, k \mid k-1} \cdot \lambda_{j, k}}{\sum_{i=1}^{N} \mu_{j, k \mid k-1} \cdot \lambda_{j, k}}\)
            end for
            // (Step 2) Combined Posterior State Estimate
            \(\hat{\boldsymbol{x}}_{k \mid k}=\sum_{j=1}^{N} \mu_{j, k \mid k} \cdot \hat{\boldsymbol{x}}_{j, k \mid k}\)
            \(\boldsymbol{P}_{k \mid k}=\sum_{j=1}^{N} \mu_{j, k \mid k} \cdot\left\{\boldsymbol{P}_{j, k \mid k}+\left(\hat{\boldsymbol{x}}_{j, k \mid k}-\hat{\boldsymbol{x}}_{k \mid k}\right)\left(\hat{\boldsymbol{x}}_{j, k \mid k}-\hat{\boldsymbol{x}}_{k \mid k}\right)^{\top}\right\}\)
        // (Step 3) Next Time Step
            \(k \leftarrow k+1\)
    end while
Output: \(\hat{\boldsymbol{x}}_{k \mid k}, \boldsymbol{P}_{k \mid k}, \mu_{j, k \mid k}\)
```

